Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 503-519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184993

RESUMO

The adsorption of proteins onto the surface of nanoparticle (NP) leads to the formation of the so-called "protein corona" as consisting both loosely and tightly bound proteins. It is well established that the biological identity of NPs that may be acquired after exposure to a biological matrix is mostly provided by the components of the hard corona as the pristine surface is generally less accessible for binding. For that reason, the isolation and the characterisation of the NP-corona complexes and identification of the associated biomolecules can help in understanding its biological behaviour. Established methods for the isolation of the NP-HC complexes are time-demanding and can lead to different results based on the isolation method applied. Herein, we have developed a fast and simple method using ferromagnetic beads isolated from commercial MACS column and used for the isolation of superparamagnetic NP following exposure to different types of biological milieu. We first demonstrated the ability to easily isolate superparamagnetic iron oxide NPs (IONPs) from different concentrations of human blood plasma, and also tested the method on the corona isolation using more complex biological matrices, such as culture medium containing pulmonary mucus where the ordinary corona methods cannot be applied. Our developed method showed less than 20% difference in plasma corona composition when compared with centrifugation. It also showed effective isolation of NP-HC complexes from mucus-containing culture media upon comparing with centrifugation and MACS columns, which failed to wash out the unbound proteins. Our study was supported with a full characterisation profile including dynamic light scattering, nanoparticle tracking analysis, analytical disk centrifuge, and zeta potentials. The biomolecules/ proteins composing the HC were separated by vertical gel electrophoresis and subsequently analysed by liquid chromatography-tandem mass spectrometry. In addition to our achievements in comparing different isolation methods to separate IONPs with corona from human plasma, this is the first study that provides a complete characterisation profile of particle protein corona after exposure in vitro to pulmonary mucus-containing culture media.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/química , Proteínas/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Meios de Cultura
2.
Front Bioeng Biotechnol ; 10: 882363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747492

RESUMO

Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals. The increased use of nanoparticles as contrast agents or in drug delivery, along with the introduction of mRNA vaccines encapsulated in PEGylated lipid nanoparticles has brought this issue to the fore. Thus, while these vaccines have proven to be remarkably effective, rare cases of anaphylaxis have been reported, and this has been tentatively ascribed to the PEGylated carriers, which may trigger complement activation in susceptible individuals. Here, we provide a general overview of the use of PEGylated nanoparticles for pharmaceutical applications, and we discuss the activation of the complement cascade that might be caused by PEGylated nanomedicines for a better understanding of these immunological adverse reactions.

3.
ACS Nano ; 16(4): 5463-5475, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35341249

RESUMO

Biomolecular corona formation has emerged as a recurring and important phenomenon in nanomedicine that has been investigated for potential applications in disease diagnosis. In this study, we have combined the "personalized protein corona" with the N-glycosylation profiling that has recently gained considerable interest in human plasma biomarker discovery as a powerful early warning diagnostic and patient stratification tool. We envisioned that the protein corona formation could be exploited as an enrichment step that is critically important in both proteomic and proteoglycomic workflows. By using silica nanoparticles, plasma fibrinogen was enriched to a level in which its proteomic and glycomic "fingerprints" could be traced with confidence. Despite being a more simplified glycan profile compared to full plasma, the corona glycan profile revealed a fibrinogen-derived glycan peak that was found to potentially distinguish lung cancer patients from controls in a pilot study.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/metabolismo , Proteômica , Projetos Piloto , Nanopartículas/metabolismo , Glicoproteínas , Polissacarídeos , Fibrinogênio , Biomarcadores
4.
Chem Commun (Camb) ; 54(52): 7219-7222, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29900459

RESUMO

The recognition of the biological, diagnostic and medical importance of exosomes has given rise to an urgent need for efficient labelling of these extracellular vesicles in ways that do not alter their inherent characteristics. We report for the first time an endogenous method to NIR-fluorescent labelled exosomes using an amphiphilic probe without the need for immunolabelling or synthetic or chromatographic manipulation of exosomes. Comparative analyses of labelled and unlabelled exosomes with NTA, AFM, flow cytometry and immunoblot analysis all show a high degree of similarity. Spectroscopic analysis and fluorescence imaging confirmed the ability to visualise purified NIR-exosomes.


Assuntos
Compostos Aza/química , Compostos de Boro/química , Exossomos/química , Corantes Fluorescentes/química , Porfobilinogênio/análogos & derivados , Tensoativos/química , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Imagem Óptica , Porfobilinogênio/química
5.
Arch Toxicol ; 92(2): 633-649, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29119250

RESUMO

Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO2, Ag, TiO2, ZnO and SiO2 with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were toxic in all cell types. TiO2 and SiO2 MNMs also triggered toxicity in some, but not all, cell types and the cell type-specific effects were influenced by the specific coating and surface modification. CeO2 MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type-specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.


Assuntos
Ensaios de Triagem em Larga Escala , Microscopia , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Células A549 , Animais , Relação Dose-Resposta a Droga , Células HCT116 , Células Hep G2 , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos , Células RAW 264.7
6.
Int J Pharm ; 533(2): 389-401, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28552798

RESUMO

The aim of our study was to develop and compare the biological performance of two types of biodegradable SN-38 loaded nanoparticles (NPs) with various surface properties, composed of low and high Mw triblock PLGA-PEG-PLGA copolymers, applying rational quality and safety by design approach. Therefore, along with the optimization of crucial physico-chemical properties and in order to evaluate the therapeutical potential and biocompatibility of prepared polymeric nanoparticles, analysis of nano-bio interactions, cell internalization, gene expression and biodistribution studies were performed. The optimized formulations, one of low Mw and one composed of high Mw PLGA-PEG-PLGA copolymer, exhibited different characteristics in terms of surface properties, particle size, zeta potential, drug loading, protein adsorption and biodistribution, which may be attributed to the variations in nano-bio interface interactions due to different NP building blocks length and Mw. On the contrary to protein adsorption and biodistribution studies, both types of NPs exhibited similar results during cell internalization and gene expression studies performed in cell culture medium containing serum proteins. This pool of useful data for internalization and efficacy as well as the notable advance in the circulation time of low Mw NPs may be further employed for shaping the potential of the designed nanocarriers.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Poliglactina 910/administração & dosagem , Adsorção , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacocinética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator 3 de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/genética , Humanos , Irinotecano , Peso Molecular , Proteínas Musculares/genética , Nanopartículas/química , Proteínas do Tecido Nervoso/genética , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Poliglactina 910/química , Poliglactina 910/farmacocinética , Ratos Wistar , Soroalbumina Bovina/química , Propriedades de Superfície , Distribuição Tecidual , Ubiquitinas/genética
7.
Nanotoxicology ; 10(10): 1431-1441, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597447

RESUMO

The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Células CACO-2 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Cinética , Células MCF-7 , Tamanho da Partícula , Prata/metabolismo , Nitrato de Prata/toxicidade , Propriedades de Superfície
8.
Nanotoxicology ; 10(10): 1395-1403, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27550382

RESUMO

Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO4. An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV-visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO4 did not directly interact with each other, the presence of NiSO4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials.


Assuntos
Células Dendríticas/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Antígenos de Superfície/genética , Técnicas de Cultura de Células , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interações Medicamentosas , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Ouro/química , Ouro/metabolismo , Humanos , Nanopartículas Metálicas/química , Níquel/química , Coroa de Proteína/metabolismo , Propriedades de Superfície
9.
ACS Nano ; 9(2): 2157-66, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25599105

RESUMO

The significance of a protein corona on nanoparticles in modulating particle properties and their biological interactions has been widely acknowledged. The protein corona is derived from proteins in biological fluids, many of which are glycosylated. To date, the glycans on the proteins have been largely overlooked in studies of nanoparticle-cell interactions. In this study, we demonstrate that glycosylation of the protein corona plays an important role in maintaining the colloidal stability of nanoparticles and influences nanoparticle-cell interactions. The removal of glycans from the protein corona enhances cell membrane adhesion and cell uptake of nanoparticles in comparison with the fully glycosylated form, resulting in the generation of a pro-inflammatory milieu by macrophages. This study highlights that the post-translational modification of proteins can significantly impact nanoparticle-cell interactions by modulating the protein corona properties.


Assuntos
Nanopartículas/metabolismo , Polissacarídeos/metabolismo , Coroa de Proteína/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Glicosilação , Humanos , Modelos Moleculares , Nanopartículas/química , Conformação Proteica , Coroa de Proteína/química , Dióxido de Silício/química
10.
Small ; 10(16): 3307-15, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24737750

RESUMO

Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.


Assuntos
Magnetismo , Nanopartículas , Organelas/metabolismo , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão
11.
Nanomedicine ; 9(8): 1159-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23660460

RESUMO

Nanoparticles have unique capacities of interacting with the cellular machinery and entering cells. To be able to exploit this potential, it is essential to understand what controls the interactions at the interface between nanoparticles and cells: it is now established that nanoparticles in biological media are covered by proteins and other biomolecules forming a "corona" on the nanoparticle surface, which confers a new identity to the nanoparticles. By labelling the proteins of the serum, using positively-charged polystyrene, we now show that this adsorbed layer is strong enough to be retained on the nanoparticles as they enter cells and is trafficked to the lysosomes on the nanoparticles. There, the corona is degraded and this is followed by lysosomal damage, leading to cytosolic release of lysosomal content, and ultimately apoptosis. Thus the corona protects the cells from the damage induced by the bare nanoparticle surface until enzymatically cleared in the lysosomes. FROM THE CLINICAL EDITOR: This study investigates the effects of protein corona that normally forms on the surface of nanoparticles during in vivo use, describing the steps of intracellular processing of such particles, to enhance our understanding of how these particles interact with the cellular machinery.


Assuntos
Lisossomos/metabolismo , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Adsorção , Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Cátions/efeitos adversos , Cátions/química , Cátions/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Peptídeo Hidrolases/metabolismo , Permeabilidade , Proteólise , Propriedades de Superfície
12.
ACS Chem Neurosci ; 4(3): 475-85, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23509983

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as promising nanodiagnostic materials due to their biocompatibility, unique magnetic properties, and their application as multimodal contrast agents. As coated SPIONs have potential use in the diagnosis and treatment of various brain diseases such as Alzheimer's, a comprehensive understanding of their interactions with Aß and other amyloidogenic proteins is essential prior to their clinical application. Here we demonstrate the effect of thickness and surface charge of the coating layer of SPIONs on the kinetics of fibrillation of Aß in aqueous solution. A size and surface area dependent "dual" effect on Aß fibrillation was observed. While lower concentrations of SPIONs inhibited fibrillation, higher concentrations increased the rate of Aß fibrillation. With respect to coating charge, it is evident that the positively charged SPIONs are capable of promoting fibrillation at significantly lower particle concentrations compared with negatively charged or uncharged SPIONs. This suggests that in addition to the presence of particles, which affect the concentration of monomeric protein in solution (and thereby the nucleation time), there are also effects of binding on the protein conformation.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Nanopartículas de Magnetita/química , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Humanos , Nanopartículas , Tamanho da Partícula , Soluções , Regulação para Cima/fisiologia , Água/química , Água/metabolismo
13.
Nat Nanotechnol ; 8(2): 137-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334168

RESUMO

Nanoparticles have been proposed as carriers for drugs, genes and therapies to treat various diseases. Many strategies have been developed to target nanomaterials to specific or over-expressed receptors in diseased cells, and these typically involve functionalizing the surface of nanoparticles with proteins, antibodies or other biomolecules. Here, we show that the targeting ability of such functionalized nanoparticles may disappear when they are placed in a biological environment. Using transferrin-conjugated nanoparticles, we found that proteins in the media can shield transferrin from binding to both its targeted receptors on cells and soluble transferrin receptors. Although nanoparticles continue to enter cells, the targeting specificity of transferrin is lost. Our results suggest that when nanoparticles are placed in a complex biological environment, interaction with other proteins in the medium and the formation of a protein corona can 'screen' the targeting molecules on the surface of nanoparticles and cause loss of specificity in targeting.


Assuntos
Nanopartículas/química , Transferrina/antagonistas & inibidores , Transferrina/química , Adsorção , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Fenômenos Químicos , Dicroísmo Circular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Humanos , Camundongos , Tamanho da Partícula , Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/química , Dióxido de Silício/química
14.
PLoS One ; 6(10): e25556, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998668

RESUMO

Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/isolamento & purificação , Nanopartículas/química , Acrilamidas/química , Acrilamidas/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Cinética , Rodaminas/química , Rodaminas/isolamento & purificação , Espectrometria de Fluorescência
15.
Biomaterials ; 31(36): 9511-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21059466

RESUMO

Nanoparticles are of an appropriate size to interact with cells, and are likely to use a range of cellular machinery for internalisation and trafficking to various sub-cellular compartments. It is now understood that once in contact with biological fluids, the nanoparticle surface gets covered by a highly specific layer of proteins, forming the nanoparticle protein corona. This protein layer is stable for times longer than the typical time scale of nanoparticle import, and thus can impact on particle uptake and trafficking inside the cells. In this work, the effect of the corona composition on nanoparticle uptake has been investigated, by studying the impact of serum heat inactivation and complement depletion on the load of nanoparticles accumulated inside the cell. For the same material and nanoparticle size, cellular uptake was found to be significantly different when the nanoparticles were dispersed in medium where the serum was heat inactivated or not heat inactivated, even for non-specialized cells, suggesting that different sera can lead to different nanoparticle doses. The fact that uptake was correlated with the amount of protein bound into the nanoparticle corona suggests the need for commonly agreed dispersion protocols for in vitro nanoparticle-cell studies.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Temperatura Alta , Nanopartículas/química , Soro/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Endocitose , Fluorescência , Humanos , Cinética , Luz , Microscopia Confocal , Tamanho da Partícula , Poliestirenos/química , Espalhamento de Radiação , Coloração pela Prata
16.
Neurobiol Learn Mem ; 88(3): 342-51, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17543552

RESUMO

Recent evidence has suggested a role for Notch in memory consolidation but the means by which this evolutionarily conserved mechanism serves these plasticity-related processes remains to be established. We have examined a role for this signalling pathway in the hippocampal dentate gyrus of Wistar rats at increasing times following passive avoidance conditioning. Our principal finding is that a transient attenuation of Notch signalling occurs at the 10-12h post-training time. In this period, extracellular Notch-1 protein fragment exhibited a significant 2- to 3-fold increase but, by contrast, Notch-1 mRNA levels were significantly reduced. Moreover, transient inactivation of Notch-1 signalling was further suggested by concomitant reductions in the Notch ligand Jagged-1 and Notch-1 target protein Hes-1 mRNA levels. The C-terminal fragment of PS-1, necessary for gamma-secretase activity, was also significantly reduced at the 12h post-training time. These events were commensurate with the increase of a Notch immunoreactive fragment of 66 kDa in the nuclear fraction of the dentate gyrus. This fragment, identified with two different Notch-1 antisera, was not the expected NICD polypeptide of approximately 110 kDa and its accumulation was found to correlate with a significantly reduced expression of the Hes-1 transcriptional repressor. During the period of reduced Notch activity, a transient increase in soluble beta-catenin and GSK-3beta phosphorylation was observed, indicating a reciprocal activation of the Wnt signalling pathway. As down-regulation of Notch signalling promotes differentiation and neurite outgrowth in post-mitotic neurons, it is proposed that this pathway regulates the integration of synapses transiently produced during memory consolidation.


Assuntos
Aprendizagem da Esquiva/fisiologia , Giro Denteado/metabolismo , Memória/fisiologia , Presenilina-1/metabolismo , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Análise de Variância , Animais , Líquido Extracelular/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , RNA Mensageiro/análise , Ratos , Ratos Wistar , Receptor Notch1/genética , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA